digital encoding for secure dATA COMMUNICATIONS

Naval Postgraduate School
Monterey, California

September 1976

NAVAL POSTGRADUATE SCHOOL Monterey, California

 ADA
THESIS

DIGITAL ENCODING FOR
SECURE DATA COMMUNICATIONS
by
Eduardo Emilio Coquis Rondon
September 1976

Thesis Advisor:
G. Marmont

Approved for public release; distribution unlimited.

UNCLASSIFIED
sLCUNTY CLASSFICATION OF THIS PAEE rimen Dume Entoreds

REPORT DOCUMENTATION PAGE	READ DNSTRUCTIONS BEPORE COMPLETNG FORM
	3. Recintent's catalog numety
Digital Encoding for Secure Data Communications	5. Trpe of nepont a pemod covened Engineer's Thesis; September. 1976 b. PInfommag ont. ntront numain
Eduardo Emilio Coquis Rondon	
9. PEnforming onganization name ano adorejs Naval Postgraduate School Monterey, California 93940	16. MROGAM ELEMEMTMROECT, TASK
i1. Controlling office name ano adoness Naval Postgraduate School Monterey, California 93940	12. neront dati September 1976 13. numien of pages 124
T6. Distridution statment (of mio roment Approved for public release; distribut	ion unlimited.
	nemerl)
16. SUPALEMENTARY MOTES	
 Digital Encoding Cryptography pseudo-random cipher data-keyed cipher	
 This thesis is concerned with the computer to realize cryptography. Thr systems: simple substitution, pseudo(polyalphabetic cipher), and data-keyed	use of the digital ee cryptographic random cipher cipher, are
	NCLASSIFIED

SLCUMTV CLASSIFICATIOM OF PHIS DAGETMman nete Entores

(20. ABSTRACT Continued)

designea, implemented through computer programing, and evaluated. A suitable cyclic error correcting code is designed to encode these systems for transmission. The code is tested by simulating a noisy channel.

Digital Encoding

 for
Secure Data Communications

by

Eduardo Emilio Coquis Rondón Lieutenant, Peruvian Navy B.S., Naval Postgraduate School, 1974 M.S., Naval Postgraduate School, 1975

Submitted in partial fulfillment of the requirements for the degree of

ELECTRICAL ENGINEER

from the
NAVAL POSTGRADUATE SCHOOL
September 1976

Author

Approved by:

Chairman, Department of Electrical Engineering

ABSTRACT

This thesis is concerned with the use of the digital computer to realize cryptography. Three cryptographic systems: simple substitution, pseudc-random cipher (polyalphabetic cipher), and data-keyed cipher, are designed, implement:ed through computer programming, and evaluated. A suitable cyciic error correcting code is designed to encode these systems for transmission. The code is tested by simulating a noisy channel.

TABLE OF CONTENTS

I. DEFINITIONS 10
II. INTRODUCTION 12
III. HISTORICAL BACKGROUND 14
IV. THEORY OF SECRECY SYSTEMS 20
A. INTRODUCTION 20
B. EVALUATION OF SECRECY SYSTEMS 20
C. PEPFECT SECRE'CY 21
D. EQUIVOCATION 26
E. IDEAL SECRECY SYSTEMS 27
V. DIGITAL SUBSTITUTION 30
A. THE DECWRITER SYSMEM 30
B. APPLICATION OF GROUP THEORY TO CRYPTOGRAFHY 3.3
C. TRANSFORMATIONS 36
D. SIMPIE SUBSTITUTION 40
E. GRAPHICAI REPRESENTATION OF RESULTS 41
F. PSEUDORANDOM SUBSTITUTION 46
VI. THE DATA-KEYED CIPHER 64
A. INTRODUCTION 64
B. DESCRIPTION AND REALIZATION 64
C. TEST PROCEDURE 67
D. RESULTS 71
E. COMPUNICATION SYSTEM DEGRADATION 73
VII. ERROR CORRECTTNG CODE SCHEME 87
A. BEST CODF DETERMINATION 88
B. THE (15,4) CYCLIC CODE AND ITS COMPUTER IMPLEMENTATION 91

1. Selection of Polynomial 91
2. Computer Realization of Encoder 94
3. Minimum Distance Decoder 95
C. NOISY CHANNEL SIMULATION 95
VIII. SUMMARY AND CONCLUSIONS 101
APPENDIX A 103
APPENDIX B 108
APPENDIX C 109
APPENDIX D 110
APPENDIX E 117
APPENDIX F 118
APPENDIX G 120
LIST OF REFERENCES 122
INITIAL DISTRIBUTIUN LIST 124

LIST OF FIGURES

1. A SECRECY SYSTEM 21
2. BLOCK DIAGRAM OF THE SIMPLE SUBSTITUTION CIPHER 42
3. SIMPLE SUBSTITUTION CIPHER-ENCRYPTING EXAMPLE 43
4. PLAINTEXT ENGLISH LANGUAGE-DISTRIBUTION FLOT 47
5. PLAINTEXT ITALIAN LANGUAGE-DISTRIBUTION PLOT 48
6. PLAINTEXT SPANISH LANGUAGE-DISTRIBUTION PLOT 49
7. PLAINTEXT FRENCH LANGUAGE-DISTRIBUTION PLOT 50
8. SIMPLE SUBSTITUTION-DISTRIBUTION PLOT-KEY=A 51
9. SIMPLE SUBSTITUTION DISTRIBUTION PLOT-KEY=C 52
10. SIMPLE SUBSTITUTION DISTRIBUTION PLOT-KEY=G 53
11. PSEUDORANDOM CIPHER-BLOCK DIAGRAM 56
12. PSEUDORANDOM CIPHER-DISTRIBUTION PLOT-KEY=C 60
13. PSEUDORANDOM CIPHER-DISTRIBUTION PLOT-KEY=K 61
14. PSEUDORANDOM CIPHER-DISTRIBUTION PLOT- 7 ALPHABETS -62
15. PSEUDORANDOM CIPHER-DISTRIBUTION PLOT-23 ALPHABETS -63
16. THE DATA-KEYED CIPHER-CONCEPT 66
17. THE DATA-KEYED CIPHER-REAIIZATION 68
18. THE DATA-KEYED CIPHER-BLOCK DIAGRAM 69
19. THE DATA-KEYED CIPHER-ENCRYPTING PROCESS EXAMPLE 74
20. THE DATA-KEYED CIPHER-ENCRYPTING PROCESS EXAMPLE ---7521. THE DATA-KEYED CIPHER-EXAMPLE OF TRANSIENTSUBSTITUTION82
21. THE DATA-KEYED CIPHER-DISTRIBUTION PLOT-KEY=A, $i=7-83$
22. THE DATA-KEYED CIPHER-DISTRIBUTION PLOT-KEY $=\mathrm{C}, \mathrm{i}=7$ - -84
23. THE DATA-KEYED CIPHER-DISTRIBUTION PLOT-KEY=J,i=2 85
24. THE DATA-KEYED CIPHER-DISTRIBUTION PLOT-KEY-J, $\mathrm{i}=17$ 86
25. THE 4-STAGE ENCODER OF THE CHARACTERISTIC POLYNOMIAL $G(X)=x^{4}+x+1$ 93
26. SECURE DIGITAL COMMUNICATION SYSTEM BLOCK DIAGRAM 98

LIST OF TABLES

I. USASCII-68 CHARACTER CODE 31
II. DECWRITER PRINTING CHARACTERS AND THEIR BINARY REPRESENTATION 32
III. INTERMEDIATE KEY VAIUES 39
IV. FREQUENCY OF TKE LETTERS OF THE ENGLISH ALPHABET, ARRANGED ALPHABETICALLY AND BY FREQUENCY 44
V. SIMPLE SUBSTITUTION CIPHER-TABLE O OCCURRENCES 54
VI. DATA-KEYED CIPHER-TABLE OF OCCURRENCES 76
VII. DATA-KEYED CIPEER-TABLE OF OCCURRENCES 77
VIII. TABLE OF MESSAGE WORDS AND THEIR CORRES- PONDENT CODE WORD FOR THE $(15,4)$ CYCLIC CODE 96
IX. $P(e)$ VS. CHANNEL β FOR THE $(15,4)$ CODE 97

I. DEFINITIONS

The folloring definitions are given to acquaint the reader with some of the terms commonly encountered in the field of cryptography.

Cryptology is the branch of knowledge that deals with the development and use of all forms of secret communication.

Cryptography is the branch of cryptology that deals with secret writing.

Cryptanlaysis is the branch of cryptology that deals with the analysis and solution of cryptographic systems.

A Cipher is a cryptographic system which conceals, in a cryptographic serise, the letters or groups of letters in the message or plaintext.

Enciphering is the operation of concealing a plaintest, and the result is a cipher text, or in general a cryptogram.

Deciphering is the process of discovering the secret meaning of a cipher text.

A key is the variable parameter of a cipher system, prearranged between correspondents, which determines the specific application of a general cipher system being used. The use of keys permits almost endless variations within a given cipher system. In fact, the value of a specific cipher system is based on how hard it is for an "eremy" to break a cryptogram or series of cryptograms, assuming he knows the complete details of the system but
lacks the keys which were used to encipher the cryptograms originallı.

A code is a cryptographic system which substitutes symbol groups for words, phrases, or sentences found in the plaintext. It involves the use of a codebook, copies of which are kept by each correspondent.

Encoding is the operation of cucealing a message using a code.

Decoding is the process of recovering an encoded message.

A code differs from a cipher because a code deals with plaintext in variable size units, such as words or phrases, while a cipher deals with plaintext in fixed size units, usually a letter at a time.

II. INTRODUCTION

Since there is no way of making data communication links physically secure, particularly if some form of radio transmission is involved, encryption is the only practical method of protecting the transmitted data. In the commercial world and nonmilitary parts of government, there is a growing need for encryption. This need for encryption is not just to satisfy the legal requirements for privacy, but also to protect systems from criminal activities.

At the present time, communication systems seem to be going towards digital means. There are alieady in use digital systems for data communications as well as for public services such as the telephone systea.

The present work was intended to study the possibility of using a digital computer to realize cryptographic systems. Further, this computer can be envisioned as part of a digital communication system, mainly to do cryptography and to implement suitāble erıor correcting codes. The DEC PDP-11/40 minicomputer was used to do this study.

Through this work, three cryptographic systems were designed, ranging from a simple substitution cipher to a data-keyed cipher. On the latter the message itself constituted the key to modify other characters. Very significant results were obtained from it in the sense that i.t gives rise to a text where its characters were nearly
equiprobable. Further, a cyclic error correcting code was designed and implemented to work with these cryptographic systems.

Some of the earliest practical crytograpinic systems were the monoalphabetic substitution systems used by the Romans [Ref. 1]. In these, one letter is substituted for another. For example, an A might be replaced by a C. By the fifteenth century, an Italian by the name of Alberti came up with a technique of cryptoanalyzing letters by frequency analyses. As a result, he invented probably the first polyalphabetic substitution system using a cipher disk. Thus, he would rotate the disk and encode several more words with the next substitution alphabet.

Early in the sixteenth century Trithemius, a Benedictine Monk, had the first printed book published on cryptology. Trithemius described the square table or tableau which was the first known instance of a progressive key applied to polyalphabetic substitution. It provided a means of changing alphabets with each character. Later in the sixteenth century, Vigenere perfected the autokey; a progressive key in which the last decoded character led to the next substitution alphabet in a polyalphabetic key. These were basically the techniques that were widely applied in the cryptomachines in the first half of the twentieth century. Various transposition techniques have been employed including the wide use of changing word order and techniques such as rail transpositions (used in the Civil War) .

In 1883, Aיдguste Kerckhoffs, a man born in Holland but a naturalized Frenchman, published a book entitled La Gryptographic Militaire. In it, he established two general principles for cryptographic systems. They were:

1. A key must withstand the operational strains of heavy traffic. It must be assumed that the enemy has the general system. Therefore, the security of the system must rest with the key.
2. Only cryptoanalysts can know the security of the key. In this, he infers that anyone who proposes a cryptographic technique should be familiar with the techniques that could be used to break it.

From these two general principles, six specific requirements emerged in his book:

1. The key should be, if not theoretically unbreakable, at least unbreakable in practise.
2. Compromise of the nardware system or coding technique should not result in compromising the security of communications that the system carries.
3. The key should be remembered without notes and should be easily changeable.
4. The cryptograms must be transmittable by telegraph. Today this would be expanded so include both digital intelligence and voice (if voice scramblers are employed) utilizing either wire or radio as the medium.
5. The apparatus or documents should be portable and operable by a single person.
6. The system should be easy, reither requiring knowledge of a long list of rules nor involving mental strain.

In 1917 Gi.bert S. Vernam, a young engineer at American Telephone and Telegraph Company, using the Baudot code (teletype) invented a means of adding two characters (exclusive or). Vernam's machine mixed a key with text as illustrated by the following:

Clear Text	1	0	1	1	1
Key	0	1	0	1	0
Coded Character	1	1	1	0	1

To derive the text from the coded character, all that was required was the addition of the key again to the coded character.

Coded Character	1	1	1	0	1
Key	0	1	0	1	0
Clear Text	1	0	1	1	1

His machines used a key tape loop about eight feet long which caused the key to repeat itself over a high volume of traffic. This allowed cryptoanalysts to derive the key, william F. Friedman, in fact, solved cryptograms using single-loop code tapes but appears to have been
unsuccess.iul when two code tapes were used. Major Joseph Om Maubor jne (U.S. Army) then introduced the one-time code tape derived from a random noise source. This was one of the first theoretically (and in practice) unbreakable code systems. The major disadvantage of the system was the enormous amounts of key required for high-volume traffic.

During the 1920^{\prime} s and $1930^{\circ} s$, the rotor-code machines having five and more rotors, each rotor representing a scrambling step, were developed. They proved relatively insecure, requiring only high-traffic volume for the cryptoanaligst to break them. In fact, the Japanese used a code-wheel-type machine for their diplomatic communications well into World War fI. It was vulnerable to cryptoanalysis, and William F. Friedman and his group not only solved the code but reconstructed a model of the machine to break Japanese diplomatic correspondence. Thus, President Roosevelt and others were aware of the impending break in diplomatic relations with Japan just prior to World War II.

The code wheels (or rotors) were nothing more than key memories storing quantities of key which could easily be changed by interchanging rotor positions, specifying various start points for each rotor, and periodicaly replacing a set of rotors. This provided a means of producing what is called key leverage.

The advent of electronic enciphering systems substantially replaced the mechanical cryptographic machines. And, further the appearance and fast development of digital logic is offering new tools to modern crypto designers. References (2). (3) and (4) from the Bell Systein Technical Journal provide interesting literature on Digital Data Scramblers.

Today, the most commonly encountered commercial cryptosystem is based on the "shift register," [Ref, 5]. Despite design variations, shift registers are used as pseudorandom key generators. The implementation of data scramblers with pseudorandom sequences using logic circuits is suggested by Twigg [Ref. 6], and Henrickson [Ref. 7]. The idea of shift register sequences is well treated by Golomb [Ref. 8]. The relative weakness of pseudorandom codes is pointed by Meyer and Tuchman [Ref. 9], from I.B.M. For high security, Torrieri [Ref. 10], and Geffe [Ref. ll], introduce the idea of using nonlinear as well as linear operations. The theory of nonlinear operations is also contained in Ref. 8.

Finally, the appearance of modern high speeत digitai computers has risen speculation as how best to apply its capabilities since it is available for both cryptography and cryptanalysis. Even the newest microprocessors are reported [Ref. 12], as being designed for encription devices.

A very comprehensive historical exposition with some descriptive technical content is the book by Kahn, The

Codebreakers [Ref. 13], which appeared in 1967. Of special interests are the sections devoted to the cryptographic agencies of the major powers, including the United States.

For the interested reader in the field of cryptography, the American Cryptogram Association publishes "The Cryptogram," a bimonthly magazine of articles and cryptograms. The hobby of soiving cryptograms provides a fascinating intellectual challenge, Patient analysis and flashes of insight, combined with the enthusiasm of uncovering something hidden, give cryptanalysts an enjoyment which is almost unique.

IV. THEORY OF SECRECY SYSTEMS

A. INTRODUCTION

A secrecy system is defined as a set of transformations of one space (the set of possible messages) into a second space (the set of possible cryptograms). Each particular transformation of the set corresponds to enciphering with a particular key. The transformations are supposed reversible (non-singular) in order to obtain unique deciphering when the key is known together with the specific system used.

Each key and therefore each transformation is assumed to have an a priori probability associated with i气. Similarly each possible message is assumed to have an associated a priori probabilit.y of being selected for encryption. These two represent the a priori knowledge of the situation for a cryptoanalyst trying to break the cipher.

To use the system a key is first selected and sent to the receiving point. The choice of a key determines a particular transformation in the set forming the system. Then a message is selected and the particular trinsformation corresponding to the selected key is applied to the message to produce a cryptogram. This cryptogram is transmitted to the receiving point by a channel where it can be intercepted by ar undesired agent. At ine receiving end, the inverse of the particular transformation is applied to the cryptogram
to recover the original message. Figure 1 provides the conseptual idea of a secrecy system.

Figure 1. A Secrecy System.

If the referred undesired agent intercepts the transmitted cryptogram through a channel, he can calculate from it and from his possibel knowledge of the system being used, the a posteriori probabilities of the various possible messages and keys which might have produced this cryptogram. This set of a posteriori probabilities constitutes his knowledge of the key and message after the interception.

The ca!.culation of the a posteriori probabilities is the general.ized problem in cryptanalysis.

C. pekfect secrecy

Shannon [Ref. 14], provides for concepts such as entropy, redundancy, equivocation and many others that are helpful for evaluating secrecy systems.

Let us assume that the message space is constituted by a finite number of messages $p_{1}, P_{2}, \ldots, P_{n}$ with an associated a priori probabilities $p\left(P_{1}\right), p\left(P_{2}\right), \ldots, p\left(P_{n}\right)$ and that these messages are mapped into the cryptogram space by the transformation

$$
C_{j}=T_{i} P_{j}
$$

The cryptanalyst intercepts a particular C_{j} and can then calculate the a posteriori conditional probability for the various messages, $p\left(P_{j} / C_{j}\right)$. It seems natural now to define that one condition for perfect secrecy is that for all C_{j}, the a posteriori probabilities of the messages P given that C_{j} has been received, are equal to their a priori probabilities, independent of these values. Or, from an information theory viewpoint, intercepting the cryptogram has given the cryptanalyst no information about the message; he just knows that a message was sent. On the other hand, if this condition is not satisfied there will exist situations in which the cryptanalyst has certain
a priori probabilities and certain choices of key and message thus preventing perfect secrecy to be achieved.

Shannon [Ref. 15], gives a theorem stating the necessary and sufficient conditions for perfect secrecy, namely

$$
\mathrm{p}(\mathrm{C} / \mathrm{p})=\mathrm{p}(\mathrm{C})
$$

for all the messages (P) and all the cryptograns (C). Where

$$
\begin{aligned}
\mathrm{p}(\mathrm{C} / \mathrm{P})= & \begin{array}{l}
\text { Conditional probability of crypto- } \\
\\
\\
\\
\text { cham C to occur if message } P \text { is }
\end{array} \\
\mathrm{p}(\mathrm{C})= & \text { Probability of obtaining cryptogram } \\
& \text { C for any cause. }
\end{aligned}
$$

Stated in other terns, the total probability of all keys that transform P_{i} into a given cryptogram C is equal to that of all keys transforming P_{j} into the same C, for all P_{i}, P_{j} and C.

In the Mathematical Theory of Communications given by Reference 14, it was shown that a convenient measure of information was the entropy. For a set of events with probabilities $p_{1}, p_{2}, \ldots, p_{n}$, the entropy H is given by:

$$
H=-\sum_{\square} p_{i} \log p_{i}
$$

In a secrecy system there are two choices involved, that of the message and that of the key. We may measure the amount of information produced when a message is chosen by

$$
H(P)=-\Sigma p(P) \log p(P)
$$

the summation being over all possible messages. Similarly, there is an uncertainty associated with the choice of key given by

$$
H(K)=-\Sigma p(K) \log p(K)
$$

For perfect secrecy systems the amount of information in the message is at most $\log \mathrm{n}$ (occurring when all messages are equiprobable). This information can be concealed completely only if the key uncertainty is at least $\log \mathrm{n}$. In a more general way of expressing this: There is a limit to what we can achieve with a given uncertainty in key, the amount of uncertainty we can introduce into the solution cannot be greater than the key uncertainty.

The situation gets more complicated if the number of messages is infinite. For example, assume that messages are generated as infinite sequences of letters by a suitable Markoff process. From the definition, no finite key will give perfect secrecy. We can suppose then, that the key source generates keys in the same manner, that is as an
infinite sequence of symbols. Suppose further that only a rertain length L_{k} is needed to encipher and decipher a length L_{p} of message. Let the logarithm of the number of letters in the message alphabet be R_{p} and that for the key alphabet be R_{k}. Then from the finite case, it is evident that perfect secrecy requires

$$
R_{p} L_{p} \leq R_{k} L_{k}
$$

This type of perfect secrecy is obtained by the Vernam system [Ref. 16].

Thus, it can be concluded that the key required for perfect secrecy depends on the total number of possible messages. The disadvantage of perfect systems for large correspondence systems such as for data communications and data retrieval services, is the equivalent amount of key that mus:t be sent.

In this paper the requirement for a large key for large messages is eliminated by designing a self keyed system that will continually originate key letters based on several past letters that were already ciphered. Provided enough distance is chosen in between selected letters the system will avoid the statistical dependency of consecutire letters in a natural language, thus generating a sequence of key letters suitable for any message length.

D. EQUIVOCATION

A cryptographic system can be compared with a communication system in the sense that whereas in one the signal is unintentionally perturbed by noise, and in the other, namely the cryptographic system, the message is intentionally perturbed by the ciphering process to hide the information. Thus, there is an uncertainty of what was actually iransmitted. From information theory a natural mathematical measure of uncertainty is the conditional entropy of the transmitted signal when the received signal is known. This conditional entropy is known as equivocation.

$$
H(X / Y)=-\sum p(x, y) \log p(x / y)
$$

From the point of view of ti ? cryptanalyst, a secrecy system is almost identical wi h a noisy communication system. The message is operated by a statistical element, the enciphering system, with its statistically chosen key. The result of this operation is the cryptogram, which when transmit+ed is vulnerable to interception and available for analysis. The main differences in the two cases are:

1. The operation of the enciphering transformation is generally of a more complex nature than the perturbing noise in a channel.
2. The key for a secrecy system is usually chosen from a fini'e set of possibilities while the noise in the

Channel is more often continually introduced, in effec'c chosen from an infinite set.

With these considerations in mind it is natural to use the equivocation as a theoretical secrecy index. It may be nozed that there are two significant equivocations, that of the key and that of the message which are denoted as $H(K / C)$ and $H(P / C)$:

$$
\begin{aligned}
& H(K / C)=-\Sigma p(C, K) \log p(K / C) \\
& H(P / C)=-\Sigma p(C, P) \log p(K / P)
\end{aligned}
$$

The same general arguments used to justify the equivocation as a measure of uncertainty in commurication theory apply here as well. zero equivocation requires that one message (or key) have unit probability and all others zero, corresponding to complete knowledge.
E. IDEAL SECRECY SYSTEMS

In Reference 15, the concept of equivocation leads to means of evaluating secrecy systems as a function of the amount of N, the number of letters received. It is shown that for most systems as N increases the referred equivocations tend to decrease to zero, consequently the solution of the cryptogram becomes unique at a point called unicity point.

In the section on Perfect Secrecy it was stated that perfect secrecy requires an infinite amount of key if
messages of unlimited length are allowsd. With a finite key size, the equivocation of key and message generally approaches zero. The other extreme is for $H(K / C)$ to be equal to $H(K)$. Then, no matter how much material is intercepted, there is not a unique solution but many of comparable probability. An ideal system can be defined as one in which $H(K / C)$ and $H(P / C)$ do not approach zero as N increases. A strongly ideal system would be one in which $H(K / C)$ remains constant at $H(K)$, that is, knowing the cryptogram has rot aided in solving the key uncertainty.

An example of an ideal cipher is a simple substitution in an artificial language in yhich all letters are equiprobable and successive letters independently chosen.

With natural languages it is in general possible to approximate the ideal characteristic. The complexity of the system needed usually goes up rapidiy when an attempt is made to realize this. To approximate the ideal equivccation, one may first operate on che message with a transducer which removes all reduniancies. After this almost any simple ciphering system - substitution, transposition. etc., is satisfactory. The more elaborate the transducer and the nearer the output is to the desired form, the moze closely will the secrecy system approximate the ideal characteriscic.

The work to be presented in following sections, will describe a scheme to approximate the ideal secrecy system oy using a digital computer to maj.nly accomplish two things:

1. Change the probability structure of natural languages to obeain an almost equiprobable occurrence of letters.
2. Eliminate the statistical dependence of successive letters in natural languages.

Further, a message transformed tc reflect these properties, wili be either transmitted as such or an additional conventional ciphering can be made.

V. DIGITAL SUBSTITUTION

The development of a digital substitution cipher was the first step taken to accomplish the present work. After it, more complex variations were experimented to obtain a reasonable secure system taking advantage of the use of the computer. Thus, it can be said that most of the subsequent work rests on these first results. A brief explanation follows of the Decwriter system and its character codes used to interface with the PDP-11/40 computer.
A. THE DECWRITER SYSTEM

The LCll Decwriter system is a high-speed teletypewriter designed to interface with the PDP-ll family of processors to provide both: Input (keyboard) and cutput (printer) functions for the systen. It can be used as the console input/output device. The system can receive characters from the keyboard or can print at speeds up to 30 characters per second in standard ASCII formats. The character code used is USASCII-68 which is listed in Table No. I. From these 128 characters, only 64 are printing characters, those of columns 2, 3, 4 and 5. Table No. II presents these 64 characters and their correspondent binary representation.

	coluans	0	1	2	3	4	5	6	7
Row	${ }_{4321}^{8175} 765$	1000	001	010	10	ti00	\%	110	111
0	0000	NUL	DLE	SP	0	@	P	1	P
1	0001	SOH	DCl	!	1	A	Q	2	7
2	0010	STX	DC2	"	2	B	R	b	r
3	0011	ETX	DC3	\#	3	C	S	c	s
4	0100	EOT	DC4	S	4	D	T	d	t
5	0101	ENQ	NAK	\%	5	E	U	e	u
6	0110	ACK	SYN	\&	6	F	V	f	v
7	0171	BEL	ETB	,	7	G	W:	g	w
8	1000	BS	CAS	1	8	H	X	h	\mathbf{x}
9	1001	HT	E.M	1	9	1	Y	i	y
10	1010	LF	SUB	*	:	J	2	j	2
11	1011	VT	ESC	+	;	K	[k	1
12	1100	FF	Fs,	,	$<$	L	1	1	!
13	1101	CR	GS	-	=	\cdots]	m	\}
14	1110	SO	RS	.	$>$	N	\sim	π	\sim
15	1111	SI	US	1	?	0	-	0	DEL

TABLE I - USASCII-68 CHARACTER CODE

SP	10100000	0	10110000	@	11000000	P	11010000
!	10100001	1	10110001	A	11000001	Q	11010001
"	10100010	2	1.0110010	B	11000010	R	11010010
\#	10100011	3	10110011	C	11000011	S	11010011
\$	10100100	4	10110100	D	11000100	T	11010100
8	10100101	5	10110101	E	11000101	U	11010101
$\&$	10100110	6	10110110	F	11000110	V	11010110
'	10100111	7	10110111	G	11000111	W	11010111
1	10101000	8	10111000	H	11001000	X	11010000
1	10101001	9	10111001	I	11001001	Y	11011001
*	10101010	:	10111010	J	11001010	2	11011016
+	10101011	;	10111011	K	11001011	[11011011
,	10101100	<	10111100	I	11001100	1	110 ± 1100
-	10101101	$=$	10111101	M	11001101	$]$	11011101
-	10101110	>	10111110	N	11001110	\wedge	11011110
/	10101111	?	10111111	0	11001111		11011111

TABLE II ~ DECWRITER PRINTING CHARACTERS AND THEIR B INARY REPRESENTATION
B. APPLICATION OF GROUP THEORY TO CRYPTOGRAPHY

A group is defined as a set of elements a, b, c, \ldots and an operation, denoted by + for which the following properties are satisfied:
a) For any elements a, b, in the set, $a+b$ is in the set.
b) The associative law is satisfied; that is, for any a, b, c in the set

$$
a+(b+c)=(a+b)+c
$$

c) There is an identity element, I, in the set such that

$$
a+I=I+a=a ; \text { ail a in the set. }
$$

d) For each element a, there is an inverse a^{-1} in the set satisfying

$$
a+a^{-1}=a^{-1}+a=I
$$

A group is abelian or commutative if

$$
a+b=b+a \quad \text { for } a l l a \text { and } b \text { in the set. }
$$

The integers urder ordinary addition and the set of binary sequences of a fixed length n under exclusive-or operation are examples of abelian groups.

From boolean algebra, an additional property of an abelian group of binary sequences $c \equiv$ a fixed length n under the exclusive-or operation is that,

The 8-bit binary sequences with which the computer handles the ASCII code characters is in this sense an abelian group. This last property suggested the idea of encrypting simply by exclusive-oring the desired set of sequences by a key (another sequence or a set of sequences). Decrypting or recovery of the original sequences can be done simply by exclusive-oring the obtained set of sequences with the key.

Basically the transformation can be expressed as

$$
\begin{array}{ll}
C=K+P, & \text { for encryption, and } \\
P=K+C, & \text { for decryption },
\end{array}
$$

where C, K and P represait an 8 -bit sequence stored in a register and the symbol + stands for the logical exclusiveor operation.

While it is clear that the whole $2^{8} 8$-bit sequences can be used to represent crypto sequences, since this set
of sequences constitute an abelian group; a limitation was imposed through this work to allow transformations to be done between printing characters (those of Table II). That is, restrict the domain and range of the transformations to the binary sequences of Table II.

We can further realize the 12 possible combinations of two sequences of same or different sets by exclusiveoring them and observe that the range of the transformations is given Ey the sets of sequences whose 4 -left most are:

$$
\begin{aligned}
& 0000 \text { for } A+A \\
& B+B \\
& C+C \\
& D+D \\
& 0001 \text { for } A+3 \\
& B+1 \\
& C+D \\
& D+C
\end{aligned}
$$

0110 for $A+C$
$C+A$
$B+D$
$D+B$
0111 for $A+D$
D +A
$B+C$
$C+B$
C. TRANSFORMATIONS

From Table II it can be observed that these sequences no longer form a group under the exclusive-or operation, since choosing any two sequences will originate a new sequence not in the referred table. For example:

$$
\begin{aligned}
\text { Plaintext character } & =A=11000001+ \\
\text { Key character } & =L=11001100 \\
\text { Ciphered character } & =00001101
\end{aligned}
$$

And we obtained a sequence 00001101 not in the table. If we observe sets A, B, C and D of Table II, we will observe that each set has its 4 -left most bits equal. Or that the dom ain of the transformation is given L! the sequences whose 4 -left most bits are:

```
Set A 1010
Set B LO11
set C 1100
Set D 1101
```

In order to make the range of the transformations equal to its domain in accordance with the restriction imposed, an additional binary multiplier: The intermediate key (IK) was devised. It allowed for mapping into the 64 printing characters.

The value of IK is dependent on the particular transformation desired and the key to be used. For example: A system is designed to transform characters from set B into characters of set. C for encryption. The decryption is done by doing the inverse. Now assume that the key to be used for a particular transformation belongs to set D.

```
Plaintext character = 8 = 10111000 (Set B)
    Key character = Z = 11011010 (Set D)
```

01100010

$$
\begin{aligned}
I K & =10100000 \\
\text { Cripto character }=B & =11000010 \quad \text { (Set C) }
\end{aligned}
$$

The intermediate key value was obtained by exclusiveoring the 4 -left most bits of the plaintext, the key and the crypto characters: as shown below,

Plaintext character	$1011+$
Key character	$1101+$
Cryptr character	$\underline{1100}$
IK	10100000

For decrypting the inverse is done, that is:

```
    Crypto charācter = B = 110000010 (Set C)
    Key character = Z = 11011010 (Set D)
        0 0 0 1 1 0 0 0
    IK = 10100000
Plaintext character = 8 = 10111000
```

Based on the concepts so far presented and the idea of the intermediate key multiplier, that allows for sequences of Table II to behave like a group, Table III was constructed. It gives the necessary values of IK for all possible transformations in between sets. From this general table, it can be obtained typicial tables of required values of IK for each specj.fic transformation. For example, if we assume that the desired transformation between the four sets were

B

encryption

Then the required table of $I K$ values will be:

		K E Y		S ET	
		A	B	C	D
	A	C	D	A	B
	B	C	D	A	B
	C	C	D	A	B
	D	C	D	A	B

E. SIMPLE SUBSTITUTION

Although the scheme develorsis and presented until now provides for transformations using the 64 printing characters, a restriction was placed to $b \in$ able to handle only the 26 letters of the English alphabet plus the additional 6 characters that appear in Table No. II, sets C and D. Thus, for the simple substitution ciphers transformations were designed between these two sets, that is,

And the corresponding table of values of intermediate keys will be:

		K E		S ET	
		A	B	C	D
	A	B	A	D	C
	B	B	A	D	C
	C	B	A	D	C
	D	B	A	D	C

Figure 2 shows in block diagram the computer realization of this simple substitution cipher. Appendix A gives the complete program to accomplish this. Figure 3 is an example of this cipher.

E. GRAPHICAL REPRESENTATION OF RESULTS

Natural languages, such as English, Spanish, German, French, etc., have a characteristic letter frequency. For example, the normal frequency for English is as shown in Table IV.

For the purpose of observing the statistical nature of plaintexts as well as of cryptograms obtained, a computer program (shown in Appendix B and C) was made to realize the following computations:

- Count the uumber of occurrences of each letter in a text.
- Calculate and piot the percentage of occurrence of each character in the text.
- Calculate the mean value of percentage of occurrences.
- Calculate the standard deviation of the percentage of occurrences.

Figure 2. Block diagram of the program for the simple substitution cipher

HTHIS_BOOK_IS_DESIGNEO_FEIMARILY_FOR_USE_AS_A_FIRST_YEAR ..GRADUATE_TEXT_IN_INFORMATIOM_THEORY_SUITAELE_FGRA_EOTH_E NGINEERS_AND_MATHEMATICIGNS_G_IT_1S_ASSUMED_THAT_THE_REF DER_HRS_SOME_UNDERSTANDING_GF_FRESHMAN_C:ALCULUS_ANO_ELEM ENTGRY_PROBREILITY_AND_IN_THE_LATER_CHAFTERS_SOME_INTEROM UCTORY_RANDOM_FROCESS_THEOFY_E_UNFORTUNATELY_THERE_1S_ON E_MORE_REQUIREMENT_THAT_IS_HARDER_TO_MEET_G_THE_FEFHOER_M UST_HRYE_A_REASONAELE_LEVEL_OF_MATHEMATICFL_MATUFITY'

a) Plaintext message (input)

 SREH_YOHDXZRHEYSREDCYYSCYFHXQHQERO_ZVYHTVCTECEOHVYEHF'CRZ KYCVENHGEVUYU"L ~CNHVYSHYHC_RHC VCREHT_VGCREOHOXZRH-YCEXS ETCXENHEYYSXZHGEXTROCHC_RXENHWHEYGXECEYCCRENHC_FEFH OHXY RHZXERHERFE"ERZRYCHC_VCH CHH_VESFEHCXHZFRCHWHC:_RHEFVSREHZ

b) Cryptogram message (output)

Figure 3. Example of a simple substitution cipher: Encrypting process. Key $=\mathrm{W}$

Alphabetically

A - 7.3\%
B - 0.9
C - 3.0
D -4.4
E - 13.0
F-2.8
G - 1.6
H - 3.5
I - 7.4
J - ?.2
$\therefore-J .3$
L - 3.5
$M-2.5$
$N-7.8$
$0-7.4$
P -2.7
$0-0.3$
R - 7.7
S - 6.3
T - 9.3
U - 2.7
$v-1.3$
W - 1.6
$x-0.5$
Y - 1.9
z - 0.1

By frequency

E - 13.08
$T-9.3$
$\mathrm{N}-7.8$
R-7.7
I - 7.4
$0-7.4$
A - 7.3
S - 6.3
D - 4.4
H -3.5
L - 3.5
C - 3.0
$F-2.8$
$P-2.7$
U - 2.7
M - 2.5
$Y-1.9$
G - 1.6
W - 1.6
$V-1.3$
B - 0.9
$x-0.5$
$K-0.3$
$Q-0.3$
$J=0.2$
$2-0.1$
tABLE IV - FREQUENCY OF THE LETTERS OF THE ENGLISH ALPHABET, ARRANGED ALPHABETICALLY AND BY FREQUENCY

For each transformation done, the text was analyzed by this program and the results were plotted. In the horizontal axis are the 32 chosen characters in the following order from zero to 31:

巴 ABCDEFGHIJKLMNOPQRSTUVWXYZ[/]^_

In the vertical axis the percentage of occurrence scale or frequency distribution is plotted.

Examples of these plots are given by Figures 5 to 8. There the frequency distribution of letters for the following languages is plotted:

Figure 4: ENGLISH
Figure 5: SPANI'SH
Figure 6: FRENCH
Figure 7: ITALIAN

The author has preferred to give the results achieved through this work by presenting these plots rather than giving messages and their cryptograms as examples of what was obtained. Inherent with these plots is an evaluation of the system used in each case. Additional information that will be found in these plots is the standard deviation of percentage of occurrence of the character in each cryptogram.

For the simple substitution cipher, it was expected to obtain similar results as for the plaintext of Figure 5. Figures 8 to 10 show the frequency distribution of characters when this system was used with different keys. As expected, similar results were obtained but with the values changed from one character to another. This occurred since one character or letter has just been replaced by another through these transformations. Table v presenting in tabular form the number of occurrences for these substitutions gives a figure of what has occurred with the messages in each case.

In Section IV, Theory of Secrecy Systems, it was stated that one goal to achieve ideal secrecy was to change the probability structure of natural languages to obtain an equiprobable occurrence of letters. This is the reason why the calculation of standard deviation was considered to evaluate secrecy obtained. Since the language to be used in this present work will be English it may be useful to keep in mind that the standard deviation for an English text is 3.81 as stated in Figure 4.
F. PSEUDORANDOM SUBSTITUTION

The simple substitution cipher car: also be called monoalphabetic cipher since there is only one alphabet to encipher the message. The cryptanalytic weakness of this cipher is the fact that a given plain language letter is always represented by the same crypto letter.

Percentage
of
Occurrence

Percentage
of
Occurrence

Character	NUMBER OF OCCURRENCES					
	K E Y					
	0	A	C	G	K	N
e	24	3	77	7	0	0
A	3	24	94	12	0	248
B	94	77	3	37	24	0
C	77	94	24	128	4	0
D	128	37	7	77	248	0
E	37	128	12	94	0	0
F	12	7	37	3	0	4
G	7	12	128	24	0	24
H	4	24	0	248	77	12
I	24	4	0	0	94	7
J	0	0	24	0	3	128
K	0	0	4	0	24	37
L	0	0	248	0	7	94
M	0	0	0	0	12	77
N	0	248	0	24	37	24
0	248	0	0	4	128	3
P	11	105	27	12	3	68
Q	105	11	27	32	3	93
R	27	27	10.5	160	76	33
S	37	27	11	33	63	48
T	33	160	12	27	93	3
U	160	33	32	27	68	3
V	32	12	160	105	48	63
W	12	32	33	11	33	76
X	63	76	3	93	27	32
Y	76	63	3	68	27	12
2	3	3	76	48	105	33
[3	3	63	33	11	160
/	33	48	93	3	12	2%
]	48	33	68	3	32	27
\cdots	68	93	48	76	160	11
--	93	68	33	63	33	105

[^0]In this section, a digital polyalphabetic substitution very much alike to the Vigenere square, cited by Sinkov [Ref. 17], is designed. The originality of the scheme presented here is the fact that the different alphabets are used in a pseudorandom way and that this is generated through a simple algorithm in the computer.

The basis for the program to realize this cipher is provided by the same algorithm as for the simple substitution case, the only variation being that the key will change for each character to be ciphered. These changes of key are controlled by a program and thus the inverse transformation can be made to decipher by using the same program. This fact that we are using a different key each time i.s the same as using a new substitution alphabet for each character.

It must be set clear here that the key used was a single letter and not a number of letters equal to the message length. This single letter was used to initialize a register used as a counter. For each new letter of the message the register contents were increased by one each time until a specific number was reached, in which case the register was reset to zero. This specific number is the desired number of alphabets to be used. Figure 11 gives a graphical idea of how this was accomplished. In the figure, N represents the total number of alphabets to be used; it ranges from one, for a simple substitution, to 32 when using all the possible alphabets.

Figure 1l. Psuedorandom cipher block diagram

The result expected for this cipher was the origination of an artificial language with 32 possible characters and with a letter frequency different than that of the plaintext message in natural English language.

To observe the results of this cipher two sets of transformations were made:

1. Using 15 alphabets and six different keys. The keys used were:
a) e
b) A
c) C
d) \mathbf{G}
e) K
f) N
2. Using a single key and different number of alphabets, in the following order:
a) 7 alphabets; key R
b) 15 alphabets; key R
c) 23 alphabets; key R
d) 31 alphabets; key R

Figures 12 and 13 show some results obtained for the first set of transformations as a plot of percentage of occurrence of the 32 different characters. As can be observed, for the six cases, all the characters have a certain number of occurrences in the cryptogram obtained, thus giving rise to an artificial language of 32 characters witha quite different letter frequency than the plaintext of Figure 4.

In the same way, Figures 14 and 15 show some results obtained for the second set of transformations, which are essentially the same as the first set.

A measure of how different these results are from the plaintext is provided by the standard deviations in each case and are here listed to provide a means of evaluating the results achieved:

Number of alphabets	Key	Std. Deviation
15	e	1.528
15	A	1.528
15	C	1.528
15	G	1.528
15	K	1.528
15	N	1.528
7	R	1.467
15	R	1.545
23	R	1.407
31	R	1.329

These standard deviation values compared with the 3.81 for the plaintext, represent a siognificant flattening of the percentage of occurrence plots, or in other words, the cryptogram has a more equiprobable letter frequency.

A significant property of this scheme if we envision it as part of a digital communication system, is the fact that it offers no error propagation during the message processing.

The reason for this is the fact that each character is operated upon independently from al.: others. Thus, if there is an error in the bit representation of a letter, there will be an error in its transformation to crypto character or in the decryption of it and no error will occur in other characters due to it.

In the next section, a cryptographic scheme will be presented that although contributing to the communication system degradation, gives better results in the sense that a nearly equiprobable artificial language is achieved which represents a significant achievement for security of data transmission and/or data storage.

Figure 13. Pseudorandom cipher (Polyalphabetic substitution)

Percentage
Of
0
U
U
0
H
H
J
U
U
0
Key $=\mathrm{K}$

Percentege
of
Occurrence

VI. THE DATA-KEYED CIPAER

A. INTRODUCTION

In this section the data-keyed cipher is presented. First, a very general description of the system is given. Then the transfer function concept of the cipher and the reversibility and consistency of its is explained, together with the equated logical form of the transformation which the author appreciates as being a very meaningful representation of the cipher in logical form. After that the computer realization is presented in block diagram form. The test Frocedure for valuating secrecy accomplished and significant results are then given. Finally, the communication system degradation due to it is analyzed.
B. DESCRIPTION AND REALIZATION

Section IV explains how the PDP-11/40 computer is handled to realize the simple substitution cipher, consistency was shown with some examples and further, the known cryptoanalytic weakness of it was explained and graphically represented by Fig. 4 where it can be observed the frequency distribution of the plaintext and of some cryptograms and their similarity can be established.

The data-keyed cipher can be explained in a general form as the scrambling of the bits of a character by operating on them by past characters, either of the plaintext, when ciphering, or of the cryptogram, when deciphering.

Provided these past characters are far enough apart in the sequence their operation on the character to be transformed will result in a nearly random transformation. This idea was supported by the fact that for far enough distance between two letters in a written language there is nearly no statistical dependence between them.

Figure 16 provides the conceptual idea of this cipher. At this point, two significant characteristics that distinguish this cipher are to be emphasized:

1. From Figure $16(a)$ and (b) it can be seen that both diagrams can be conceived as c . transfer function that essentially perform similar transformations on their inputs. An advantage is that when this is realized in the computer by a program, the same program will execute both transformations; that of ciphering and deciphering.
2. From Figure $16(b)$ it can be observed that there is no feedback present, that is, the outputs are not dependent on past outputs. The significance of this fact will be considered at the end of this section when system degradation for this cipher is treated.

The realization of this ciphering scheme again uses the basic transformations presonted in Section IV, plus additional steps are included to accomplish the data-keyed function. The conceptual idea given in Figure 16 can now be expressed in logical equated form as:

a) Enciphering

b) Deciphering

Figure 16. Data-Keyed Cipher-Concept

CIPHERING:

$$
C_{j}=\left(K+C_{j-1}\right)+P_{j}
$$

DECIPHERING:

$$
P_{j}=\left(K+c_{j-1}\right)+c_{j}
$$

where
$\mathbf{P}_{j} \quad=$ present plaintext character
$C_{j} \quad=$ present crypto character
$C_{j-1}={ }^{1}{ }^{1}$ " times pre eeding crypto character
$\mathrm{K} \quad=\mathrm{key}$ character

Again the operator used is the Exclusive-Or. Mhese logical equations show the reversibility of the transformation and thus its consistency.

Figure 17 is now presented to give a more significant representation of the transformation to be realized. The index "i" is selective and it represents the distance between characters already explained.

Figure 18 shows the block diagram of the realization of this cipher in the $P[2-11 / 40$.

Appendix D gives the complete listing of the program used.
C. TEST PROCEDURE

The plaintext messag" used to test the results of this C.isher scheme was the one presented in Section IV with its

Figure 17. Data-Keyed Cipher-Realization

Figure 18. Data-Keyed Cipher-Block Diagram
statistics representative of the English language as shown in Figure 4.

This cipher, as depicted by Figure 17, has two possible choices of variables, namely:

- The key, with a total of 32 .
- The delay factor " i " which could be varied from zero, for a simple substitution; up to any number n. However, for any choice of n there will be the same amount of simple substitution characters at the beginning of the cryptogram. This disadvantage can be avoided by using for the first letters of the plaintext, meaningless text.

As for the simple substitution case, the intermediate keys were selected to reflect tre transformations between sets C and D of Table II.

To observe the results obtained with this cipher two sets of transformations were made:

1. Using a fixed value of "i" and six different keys. For $i=7$ and the keys:
a) @
b) A
c) C
d) G
e) K
f) N
2. For a fixed key and the following values of "i" $($ Key $=J):$
a) $i=2$
b) $\quad i=3$
c) $\quad i=10$
d) $\quad i=13$
e) $\quad i=17$
f) $\quad \mathbf{i}=\mathbf{2 0}$

D. RESULTS

The results obtained for this cipher were, in all cases, significantly better than the Pseudorandom cipher of the previous section in the sense that the standard deviations were much lower, thus obtaining a nearly equiprobable text of cryptograms.

For the test procedure established, the following were the specific results obtained:

1. For a fixed value of "i" and using 6 out of 32 possible keys the following were the values of standard deviation obtained:

Key	"i"	Standard deviation
	7	0.5783
A	7	0.6301
C	7	0.5395
G	7	0.5651
K	7	0.5608
N	7	0.6015

Figures 22 and 23 are some example plots for these cases. These figures are shown at the end of this section.
2. For a fixed key, different values of " $\mathrm{i}^{\text {" }}$ were tried. The values of standard deviation obtained in each case were:

Key	nin	Standard deviation
J	2	0.5761
J	3	0.5344
J	10	0.528
J	13	0.5317
J	17	0.4609
J	20	0.501

Figures 24 and 25 are some example plots for these cases and are presented at the end of this section.

We can now compare these results with the statistics of a plaintext English message with a standard deviation of 3.81 (see Figure 4). A significant flattening of the percentage of occurrence plots has occurred. In addition the statistical dependence of occurrence of the letter in the message has been hidden. The reason for this will be explained in the last part of this section where the nature of the ciphering scheme is explained in detail, together with the inherent degradation to a communicatior. system due to it.

In Section IV it was stated, from Shannon [Ref. 15], that an ideal cipher may be an artificial language in which all letters are equiprobable and successive letters occurring independently. This is nearly the case for this cipher. Now a simple substitution, such as the one presented in Section V, can be performed on the message without making it easier to decipher.
3. A very meaningful characteristic of this scheme was the fact that the same program recovers or deciphers the message. Figures 19 and 20 present two examples of the encrypting results after being processed by the program corresponding to this cipher.

To give an idea of the number of occurrences of each character in the cryptograms for each of the 12 cases of (1) and (2), Tables VI and VII are next presented.
4. The implementation of this cipher in a digital computer can also be seen as the implementation of a code where the transformations are dependent on a key (a letter or character), the present letter to be encoded and some past crypto character.

E. COMMUNICATION SYSTEM DEGRADATION

Due to the nature of the process of ciphering and deciphering of this system, it can be said that when it comes to play an integral part of a communication system, it, at the most, will double the probability of block error. Here the block length has been 8 bits corresponding to a

```
CTHIS_EOGK_IS_GESIGMEU_ZFIHGRILY_FGR_USE_FS_R_FIRST._YEFE:
_GRAOURTE_TEXT_IN_I!JFIFMATIGN_THEGRY_5UITGELLE_POR_EOTH_E
NGINEERS_FHO_MATHEHATICIANS_&_:T_IS_FSEUMED_THFT_THE_FEFH
DER_HGS_5OHE_UHOERSTRMGING_OF_FEESHMFU_CFLCULUS_FMO_ELE:G
ENTARY_FROEREILITY_GNO_IN_THE_LATER_CHAFTERS_EOME_INTSOO
UCTORY__PANDOM_FRGOESS_THEQRY_@_UMFORTTUNATELY_THEEE_IS_IH
E_MORE_EEQUIFEMENT_THGT_IS_HARDER_TO_MEET_f_THE_FEADER_M
UST_HAVE_A_REFSGMAELE_LENEL_OF_MATHEMATICAL_MGTUF:ITY
```

a) Plaintext message (input)

b) Cryptogran message (output)

Figure 19. Data-Keyed cipher Encrypting process

DTHIS_ECUK_IS_DESIGNEI_FFIHAFILY_FGE_USE_GS_F_FIF:ST_HEAE - GFAGURTE_TEYT_IN_IHEGFMHTIIH_THEGEY_SUTTFFLE_FGF_EOTH_E NGIHEEPC_SNO_MFTHEMFTIEIENE_G_IT_IE_RSSUMEO_THAT_THE_FEF OER_HFS_SOHE_UNOEFSTFHOIMG_OF_FRESHMAH_CFLCULLUS_FMG_ELEFB ENTRRY_FRORAEILITY_RNO_IN_THE_LRTER_CHFFTERS_SGME_INTEGQ UCTGRY_FANDGM_FEGCESE_THEDFY_G_UNFGETUNFTELY_THEFE_IS_ON E_MOFE_REQUIFEMENT_THAT_IS_HAFPOEF_TO_MEET_f_THE_PERDER_M UET_HFVE_F_FEFSGNAELE_LEVEL_GF_MATHEMATIC:GL_MFTUF:ITY'
a) Plaintext message (input)

b) Cryptogram message (output)

Figure 20. Data-Keyed cipher Encrypting process

Character	NUMBER OF OCCURRENCES					
		K E Y		$(i=7)$		
	e	A	C	G	K	N
e	36	33	40	46	45	32
A	35	38	37	40	40	34
B	35	40	33	32	32	42
C	55	50	51	52	53	50
D	47	42	56	50	42	48
E	46	51	52	49	46	59
F	47	55	41	42	44	47
G	50	42	41	40	46	36
H	41	35	48	35	43	41
I	38	44	44	38	41	52
J	34	41	28	31	29	33
K	47	40	40	44	38	34
L	44	37	34	47	48	37
M	42	49	39	45	45	47
N	29	29	32	29	29	33
0	32	32	42	38	37	33
P	51	37	47	38	36	45
Q	43	57	48	44	48	51
R	50	55	45	43	61	58
S	58	53	62	60	61	50
T	53	39.	42	51	49	46
U	40	54	43	47	50	41
V	51	51.	48	50	52	63
W	38	38	49	51	50	53
X	59	62	45	54	56	47
Y	64	61	53	56	53	49.
2	43	37	54	40	38	50
[37	43	51	51	52	36
1	52	40	46	37	39	43
]	51	63	58	55	51	60
\cdots	52	52	46	60	42	58
	52	52	57	57	56	44

Table No. VI .- Data-keyed cipher Table of number of occurrences.

NUMBER OF OCCURRENCES

Character	" $\mathbf{i} \times$ Values			$(\mathrm{KEY}=\mathrm{J})$		
	2	3	10	13	17	20
e	37	42	40	32	42	46
A	41	40	36	35	41	48
B	48	39	49	34	36	40
C	44	37	38	40	29	39
D	34	43	47	41	41	50
E	43	41	46	49	50	47
F	47	43	35	47	42	48
G	45	46	48	39	40	33
H	48	39	44	33	48	38
I	38	36	34	53	45	35
J	32	54	36	46	42	38
K	52	42	40	38	41	31
L	41	42	37	38	40	38
M	37	41	34	44	36	36
N	45	28	52	48	35	42
0	26	45	42	41	50	49
P	44	46	49	59	51	50
Q	36	52	58	50	48	45
R	61	36	46	53	47	45
S	46	65	37	56	48	62
T	60	62	43	43	52	48
C	49	50	47	54	56	50
V	54	44	45	55	40	55
W	46	50	62	38	50	49
X	43	58	53	36	46	44
Y	49	42	51	49	49	52
2	44	45	41	49	57	54
[44	57	53	55	49	36
1	60	50	48	40	39	45
]	54	42	62	46	55	55
\wedge	52	50	55	55	53	56
	52	45	44	56	54	48

Table No. VII.- Data-keyed cipher
Table of number of occurrences.
byte. It must be emphasized that, although for ease of computer realization the 8 -bit byte was used to represent a letter; only 5 bits could have been enough since we are using only 32 letters or characters.

This increase in probability of error can be said to be significant but with the availability of error correcting codes the initial probability of error can be reduced as desired and appropriately so that doubling it when using the cryptosystem will not be that significant. Further, since a computer is being used to implement it, it also can be used to realize a suitable error correcting scheme. In the next section, a suitable error correcting scheme is presented, that will essentially overcome this degradation.

The examples that follow are intended to explain how the probability of block error is doubled and also the existence of a transient simple substitution for the first "i" characters.

Based on these two examples the following observations can be made:

1. There is a transient simple substitution for the first "i" characters when enciphering. This is the case of C_{1}, C_{2} and C_{3} from Example 1.
2. After the transient simple substitution, the crypto characters are a result of a number of plaintext characters. And, the higher the index of the crypto to be obtained, the more the number of plaintcxt characters on which it depends.

Example No. 1

Enciphering process
Transformation: $C_{j}=\left(K+C_{j-i}\right)+P_{j}$

Plaintext sequence: $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}, \mathrm{P}_{4}, \mathrm{P}_{5}, \mathrm{P}_{6}, \mathrm{P}_{7}, \mathrm{P}_{8}, \mathrm{P}_{9}$
Let $i=3$

$$
\begin{aligned}
& C_{1}=K+P_{1} \\
& C_{2}=K+P_{2} \\
& C_{3}=K+P_{3} \\
& C_{4}=K+C_{1}+P_{4}=K+\left(K+P_{1}\right)+P_{4}=P_{1}+P_{4} \\
& C_{5}=K+C_{2}+p_{5}=K+\left(K+P_{2}\right)+P_{5}=P_{2}+P_{5} \\
& C_{6}=K+C_{3}+P_{6}=K+\left(K+P_{3}\right)+P_{6}=P_{3}+P_{6} \\
& C_{7}=K+C_{4}+P_{7}=K+\left(P_{1}+P_{4}\right)+P_{7} \\
& C_{8}=K+C_{5}+P_{8}=K+\left(P_{2}+P_{5}\right)+P_{8} \\
& C_{9}=K+C_{6}+P_{9}=K+\left(P_{3}+P_{6}\right)+P_{9} \\
& C_{10}=K+C_{7}+P_{10}=P_{1}+P_{4}+P_{7}+P_{10} \\
& C_{11}=K+C_{8}+P_{11}=P_{2}+P_{5}+P_{8}+P_{11} \\
& C_{12}=K+C_{9}+P_{12}=P_{3}+P_{6}+P_{9}+P_{12} \\
& C_{13}=K+C_{10}+P_{13}=K+P_{1}+P_{4}+P_{7}+P_{10}+P_{13}
\end{aligned}
$$

Example No. 2 Deciphering process

$$
\text { Transformation: } \mathbf{P}_{\mathbf{j}}=\left(\mathrm{K}+\mathrm{C}_{\mathrm{j}-\mathrm{i}}\right)+\mathrm{C}_{\mathbf{j}}
$$

Cryptogram sequence: $C_{1}, C_{2}, C_{3}, C_{4}, C_{5}, C_{6}, C_{7}, C_{8}, C_{9}$

Let $i=3$, as before
$P_{1}=K+C_{1}$
$P_{2}=K+C_{2}$
$P_{3}=K+C_{3}$
$P_{4}=K+C_{4}+C_{1}$
$P_{5}=K+C_{5}+C_{2}$
$P_{6}=K+C_{6}+C_{3}$
$P_{7}=K+C_{7}+C_{4}$
$P_{8}=K+C_{8}+C_{5}$
$P_{n}=K+C_{n}+C_{n-i}$
3. The order of dependency observed in Example 1 is different for the deciphering case, where the recovering of the text is just dependent on two crypto characters. Thus, one error in the crypto sequence will just give rise to two errors in the plaintext.

Figure 21 gives an exa ple of the transient simple substitution explained. The value of " $\mathrm{i}^{\prime \prime}$ chosen there is 50. As an example it can be obsersed here that for the first 50 characters of the plaintext the letter R is always substituted by the letter C.

RTHIS_IS_AN_EXAMPLE_OF_R_CYCLIC_ERROR_CORRECTING_CUCE_AF FLIED_TO_A_CIPHEREC_MESSAGE_-_NOISE_GEMERGTED_IN_F_FROGR GM_IS_MOUULO_THO_AOVEO_TO_THE_MESEAGE_TO_TEST_THE_EFFECT IVENESS_OF_THE_COOEE

a) Plaintext

Transient substitution


```
TH_-MEHJONGY'CFOOMF
```

b) Cryptogram

Figure 21. Data-keyed Cipher - Example of transient substitution. $i=50$.

Percentage
of
Occurrence

VII. ERROR CORRECTING SCHEME

The data-keyed cipher of the last section offers to the system a degradation in the sense that the probability of word error is doubled due to the nature of the encipherment process, as was explained. This increase in error will undoubtedly affect the legibility of any message. Thus it was necessary to look into error correnting codes that will eventually overcome this present disadvantage. Again the availability of the digital computer proved to be very useful for enciphering the message and to encode it for transmission.

The error correcting code developed was intended for transmission over a memoryless binary symmetric channel. A memoryless channel is the one on which noise does not depend upon previous events. A binary symmetric channel is one for which the probability of a zero to be changed to a one, is equal to the probability of a one to be changed to a zero, during transmission.

Notation that will encountered through this section follows:

```
k = Number of information digits
m = Number of check bits
n = Code word length ( }\textrm{n}=\textrm{k}+\textrm{m}\mathrm{ )
e = Maximum number of correctible bit errors
        in one word
R = Data rate ( }R=k/n
```


$\mathrm{d}=$ Hamming distance between code words.
A. BEST CODE DETERMINATION

The noise channel theorem as stated by Shannon [Ref. 14] is:

Let a discrete channel have the capacity C bits/sec. and a discrete source has the entropy per second H. If $H<C$ there exists a coding scheme such that the output of the source can be transmitted over the channel with an arbitrarily small frequency of errors. If $H>C$, it is possible to encode the source so that the equivocation is less than $H-C+\varepsilon$, where ε is arbitrarily small. There is no method of encoding that gives an equivocation less than $\mathrm{H}-\mathrm{C}$.

The discrete source entropy for long messages consistin of discrete symbols is given by

$$
H(x)=-\sum_{i=1}^{n} p_{i} \log p_{i}
$$

where p_{i} is the probability of occurrence of a given symbol. In the situation where the symbols are transmitted over a noisy channel a given symbol x_{i} may be received as y_{i}. Shannon's measure of uncertainty at the receiver of what was actually transmitted is defined as:

$$
H(x / y)=-\sum_{x}^{\sum} \sum p\left(x_{i}, y_{i}\right) \log p\left(x_{i} / y_{i}\right)
$$

For the binary symmetric channel this uncertainty is given by:

$$
H(x / y)=-(\beta \log \beta+(1-\beta) \log (1-\beta))
$$

Then the channel capacity is given by

$$
C=H(x)-H(x / y) \quad \text { maximized for } H(x) \text {. }
$$

A significant parameter commonly used is the probability of word error in the message instead of the uncertainty measure. The probability of word error is defined as:

$$
P(e)=\frac{\text { Number of wrong decoded words }}{\text { Number of words in message }}
$$

It must be noted at this point that there will not necessarily be a code word for each ASCII character used. In fact this was the case for the code implemented, where each 4 bits of the message sequence is encoded into a 15-bit word. Thus, each 8-bit ASCII character was encoded into two words for transmission.

A "best code" means one that has least probability of error for any give channel β and the highest rate given by the ratio of information bits over the bit-length of each code word. The error correction ability of the code can be derived from the Varsharmov-Gilbert-Sacks condition (upper bound)

$$
2^{m}>\sum_{i=0}^{2 e-1}\binom{n-1}{i}
$$

which is a sufficient but not necessary condition. And from the Hammings lower bound inequality

$$
2^{m} \geq \quad \sum_{i=0}^{e} \quad\binom{n}{i}
$$

which is a necessary but not sufficient condition for designing an e-tuple error correcting code.

Conversely, using these conditions, once a code is chosen and specified by its rate (R) and code word length (n), the number of correctible e-tuples can be determined.

The theoretical value of probability of error is given by Ash [Ref. 18]:

$$
p(e)=1=\sum_{i=0}^{e} N_{i} \beta^{i}(1-\beta)^{n-i}
$$

where N_{i} is the number of correctible e-tuple errors, and $\mathbf{e}_{\mathrm{i}}=0,1,2, \ldots$ up to the maximum number of correctible errors per word.

The Hamming distance (d) is the minimum distance between code words. If d happens to be even and the maximum value of e is given by $(d-1) / 2$, this will yield a fraction.

Then the number of maximum e-tuple errors is given by Shiva [Ref. 19]
$\frac{\text { Number of correctible } d / 2 \text { errors }}{\text { Total number of } d / 2 \text { errors }}=1-\frac{\frac{\mu(\mu+1)}{2}}{n}$
where

$$
\mu=\frac{d!}{\left(\frac{d}{2}\right)!\left(\frac{d}{2}\right)!}
$$

For the same channel (β constant), raducing the probability of error results in a reduction of the code rate. Working backwards, for any given probability of efrror and word length, one can estimate the information length and code rate by using the Varsharmov-Gilbert-Sacks condition.

In the present work a cyclic code with a rate $R=4 / 15$ is implemented to overcome the degradation due to the noisy channel. Its effectiveness was tested by simulating transmission over a binary symmetric channel with different values of B.
B. THE $(15,4)$ CYCLIC CODE AND ITS COMPUTER REALIZATION

The theory of Cyclic Codes and their representation by means of a k-stage feedback shift register is very well treated by Ash [Ref. 18].

1. Selection of Polynomial

In order to be compatible with the l6-bit organization of the PDP-11/40, the characteristic polynomial for
this code was chosen from Appendix C of Peterson [Ref. 20], and it was

$$
G(x)=x^{4}+x+1
$$

which is an irreducible polynomial and which can be represented by a 4-stage shift register as shown in Figure 26. Since $G(x)$ is a maximum period irreducible polynomial, with a period $2^{4}-1=15$, it divides the polynomial $x^{15}+1$ (modulo 2). Thus, the check polynomial for this code will be

$$
H(x)=\frac{x^{15}+1}{G(x)}=x^{11}+x^{8}+x^{7}+x^{5}+x^{3}+x^{2}+x+1
$$

The polynomial cnosen originates a $(15,4)$ cyclic code, that is, a code where

$$
\begin{aligned}
& \mathrm{k}=4 \\
& \mathrm{~m}=11 \\
& \mathrm{n}=15
\end{aligned}
$$

The coefficients of the check polynomial for the code word 00010011010111. Since the code is cyclic, any cyclic shift of the check word and any linear combination of code words is znother code word. This property of the cyclic code represents an advantage for decoding purposes.

[^1]
Figure 20. 4-stage encoder of the characteristic
polynomial $G(x)=x^{4}+x+1$

2. Computer Realization of Encoder

Encoding in a digital computer is accomplished by realizing the shift-register operations by implementing a matrix multiplication of the message word by a generator matrix.

The generator matrix for the characteristic polynomial $G(x)=x^{4}+x+1$ used, was

$$
\text { [G] }_{4,15}=\left(\begin{array}{lllllllllllllll}
1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

which when multiplied by the message word $[x]_{1,4}$, yielded the code word ${ }^{[w]} 1,15$.

A further comment can be made on the structure of the generator matrix: The four rows are code words and they are linearly independent, and, any of the other code words can be obtaineả by linear combination of these four rows. For ease of computer implementation, to obtain a code word it was only needed to exclusive-or the rows of [G] ${ }_{1,15}$ where a 1 occurs in the message word. For example,

$$
[\mathrm{X}]_{1,4}=1100 \quad \text { (message word) }
$$

First row of $G=100010011010111+$ Second row of $G=0$ l 0011010111100 Code word $\quad 110001001101011$

Appendix E shows the complete listing of this encoding program.

3. Minimum Distance Decocer

Table VIII gives the code words for the 16 possible message words when the $(15,4)$ cyclic code is used. It can be observed that the Haming distance between these code words is 8. That is, the number of different digits between code words is $8(\mathrm{~d}=8)$.

With the minimum distance decoder, if any combination of $\frac{d-1}{2}$ or less errors occur in a received code word, it can be corrected with absolute certainty. For this code, any 3 or less errors can be corrected successfully.

For the case when 4 -digit errors occur ($\epsilon=4$), the Varsharmov-Gilbert-Sacks condition (Upper bound)

$$
2^{m} \underset{i=0}{2 e-1}\binom{n-1}{i}
$$

is not satisfied and thus there exists an uncertainty on whether a 4-digit error will be corrected. It has been found experimentally that 67.8% of different combinations of 4-digit errors can be corrected. Appendix G shows the complete listing of the decoding program.
C. NOISY CHANNEL SIMULATION

Table IX provides the expected probabilities of error for transmission over a noisy binary symmetric channel when using the $(15,4)$ cyclic code presented, as given by

Information
:ord

| 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | 0

Channel β	Probability of error $P(e)$
0.07050	5.4480×10^{-3}
0.09797	2.9176×10^{-2}
0.12426	6.2425×10^{-2}
0.13992	1.2542×10^{-1}
0.1709	1.8780×10^{-1}
0.26613	4.9052×10^{-1}

TABLE IX. $P(e)$ vs. channel β for the code ($15 ; 4$)

Cetinyilmaz [Ref. 21]. In the same reference a noise generating program is presented to simulate different conditional probabilities of error for the BSC. The same program was used in this thesis to simulate a noise BSC and to test the effectiveness of the code implemented. Appendix F gives a listing of the program.

Having the enciphering scheme, the error correcting code and a mean for introducing noise into the message to reflect different values of β for the channel, all were combined to simulate a Secure Digital Communication System, as depicted by Figure 27.

The following is the complete program flow for the system:

a) Input program (address 20000 to 20036) - The message is typed in. The program stores the message in ASCII code form into memory locations 30002-32000 (16-bit form).
b) Data-keyed cipher program (10000-11044) - The key to be used is typed in, the program stores it at 30000. The program takes the message from 30000-32000, ciphers it and then stores it at 40000-42000 (16-bit form). The parameter " i " can be selected at address 10014.
c) Input interface program (14000-14036) - This program puts the ciphered text, already in 16-bit form, into 8-bit form to be handled by the encoding program. 8-bit characcers are moved into memory locations 51000-52000.
d) Encoder program (14040-14152) - Encodes message and stores coded words into memory locations 52000-54000. Generator matrix is stored at

Memory location	Content
50200	104656
50202	46570
50204	23274
50206	11536

e) Noise generating program (14540-14754)
f) Noise mixing program (14756-15050) - Takes coded words from 52000-54000 and exclusive-ors them with noise words at 32000-34000, thus introducing noise into the text. Results are stored back at 52000-54000.
g) Minimum distance decrder (14154-14436) - Takes the distorted coded words from location 52000-54000, decodes them if they are correctible and stores the deccded words at location 56000-57000. Check polynomial is 11536 at address 50104.
h) Output interface program (14440-14464) Takes decoded words and moves them to 30000-32000 to be deciphered.
i) Data-keyed deciphering program (10000-11044) - Same as (b), the only change needed is to chang 2 the contents of address 10012 from 40002 to 30002 to be compatible with the decipherment process. The program deciphers the message and stores the results in memory locations 40000-42000.
j) Output program (12000-12244) - Prints the cryptogram and the plaintext message.

VIII. SUMMARY AND CONCLUSIONS

After looking at the computer organization and establishing a basis to realize reversible transformations, three cryptographic systems were implemented:

1. Simple substitution
2. Pseudo-random cipher
3. Data-keyed cipher

The first, provided the basis for the other two. It was not intended to provide any significant amount of security since the cryptanalytic weakness of a simple substitution is well known.

The pseudo-random cipher is provided with a means to do polyalphabetic substitutions. This kind of cipher is known to be time consiming when done manually. The algorithm used to generate pseudo-random keys was a simple one, though it can be as complex as the user desires.

With the data-keyed cipher very significant results were obtained in the sense that its distribution plots were fairly flat. A disadvantage presented by this cipher was the error propagation when deciphering. This fact motivated the author to look into error correcting codes to use them with this or any other system. A $(15,4)$ cyclic error correcting block code was implemented. This code contributed appreciably to reduce the probability of error,
$P(\epsilon)$, when transmission was simulated over a noisy binary symmetric channel.

Finally, it can be said that the digital computer is suitable for encrypting and coding data for transmission, providing at the same time many different alternatives for both functions. With the advent of microprocessors and with communication systems tending to become all digital, it is certain that we will see in the future a computer performing these functions together with many more.

fPPEHDIX g. - PROGRRY FOR THE

SIMPLE SUESTITUTION CIFHER

```
018800/885000
010062 /005082
019004/005037
010006 /17?560
013010 /105737
018012/177550
017014/100375
019016/013700
019020 /177562
010022/005003
010024/920027
018025 /900260
019030/10800?
010022/012705
018024;080001
019036/088416
010040/820027
010042/000300
010044/100005
010046/012702
010050/000063
018052/008410
010054/82602?
640056/90日220
914064 /106982
010062 /01270%
010064 <060005
01.3065/008402
010070 /01<702
010072/000007
013074/005202
01007E/105727
019100 1177564
01$102 1190275
010104 ;1186E?
010105 /177566
640110 %905091
619112 %905037
619114 12?7550
614145:155?%T
M18100 <175566
```

```
010122/100375
010124/013781
010126 /177562
018130/122701
010132/800215
010134/001034
010136 /185737
010140/177564
010142/100375
010144/110137
018146 /177566
019150/012702
019152/000012
019154/105737
010156 /177564
010160/100375
010162/11273?
010164/000200
010166/177566
010170 107?207
010172/1057%7
010174/177564
010176 /100375
010200 1112727
010202/000212
419204/177566
018206 ;105727
015216/177564
010212/100275
010214/11272?
01921E;000212
010228/177566
910222/000137
010224/001.172
01022\varepsilon/922705
010230/000064
010232/190455
010234 /0122702
010236 /000002
010240 /100425
010242/020127
919244 %600266
019246/10060%
819250 :012704
140252 ;040260
```

```
010254/000520
010256 /e20127
010260.1008300
010262/108803
010264/012704
010266 /800260
010278/000512
010272/020127
810274/000320
010276 :100003
010308 /e12704
010302/000260
010304 1000504
010306/012704
010310/800260
010312/000504
019314 /22012?
010216/900260
010320/100602
010:22 /012704
810こ24 /000246
010226 /008472
010320 102012?
0195こ2 ;000%00
01!224/100002
010325/012704
010540/000240
010242/000455
018544 %020127
01034E 000220
910350 /100803
010352/012704
918こ54 /606240
G10こ56/0.04457
016360 ;012704
&10こE2 /000240
6193E4 <000454
810こ66 /022702
019270/000005
010372/100425
019%74/02012?
019575 600250
919400 %106005
010402 %12704
910484 ;800520
```

```
010406/000443
010410/920127
010412/000300
010414/100003
010416/012704
010420 1000320
810422/000435
010424/020127
010426/000320
010430 /100003
010432/012?04
010434/090320
01043: /000427
010446 /012704
010442/000220
010444/0100424
01044E/020127
019450/000250
010452/100002
010454/012704
910455/0100300
61046日/000416
010452/020127
6104E4 /006:00
010466/100005
015476 /912704
010472 /000200
010474/000410
610476 /020127
419500 /000こ20
010502 /19606?
G10584/012704
910506 /000:006
G10510 r606402
010512 /012?04
010514/000200
010516/074001
010520/074401
010522/105727
010524/177564
010526/100275
010559/110157
0105:2/177566
0105:4/605202
91052G/g2022?
```

```
010549/800050
010542/001536
010544/005002
010546 /10573?
010550/177564
010552 /100375
010554 /11273?
010556 /800215
010560 /177566
010562/812702
010564/090012
019566/10573?
010570/177564
010572/100375
010574/112737
01057E/000200
010606/17P566
019692 /07720?
010604 /105727
@10606 /175564
010618:1010375
916612/112727
019614 /601012
010616/177566
919620/10573?
019622/177564
619524 :1002?5
010625/112727
01065日 1000212
010620 117755E
0185こ4;095002
010625/955064
010649/006167
010642/172244
```


APPENDIX B. - PROGRAM TO COUNT THE NUMEER
 OF OCCURRENCES OF EACH CHARACTEK IN A MESSRGE STORED AT LOCATION 40000 AND UF

3806	
16	
3020	
22	
24	
13026	
30	
803	
13036	100
948	
13044	
13046	
50	
52	
13054	
13056	
? 366	
013064	

APPEHDIX．C．－PROGRGM TO COMPUTE STATISTICS

of message

```
10 BLKDEF B0,32,1
20 BLKDEF B1,32,0
30 BLKDEF E2,32,0
40 BLKDEF 83,32,1
50 LET B3,0,' EABCDEFGHIJKLMNOPQR5TUYHXYZ[/J^_'
60 BIBSET E0,3,11
65 EIBSET 89,1,15
E6 BIB5ET BZ,1,15
70 LINK '110000',I1
150 FLORT BG,B1
155 MOYE B1,B2
160 INTG 81
170 LET P0,B1,:1
171 MOYE E2,B1
188 PRINT 'TOTAL NUMBER OF OCGURRENCES= ',RG
181 PRINT ' '
199 PRINT 'CHAR NO. OF OCCUERENCES
20日 FOR 12,0, 31
219 LET R1,B1,12
229 STACK 201,200,5,100, 4,254
240 LET B1,I2,R4
259 TRANS 0, B2,12,I1
269 HOLOUT 'KE',I1,':'
27g LET R2,E1,I2
271 LET 13.80.12
2&0 PPIMT , ',I?
2g2 NEKT I2
285 PRINT
291 OSPEC 'CF.'
292 DISPLY'E1,'M','G`
29: OSPEC 'KE'
200 LET R1. 32.
310 MOVE B1,82
320 MUL B1,B1
320 INTG E2
340 LET R2,B2,31
250 QUOT R2,R2,R1
3EG PRINT 'EXPECTEO YGLUE = ",PZ
206 PROD R2,R2, P2
z90 INTG 81
4019 LET Rこ, 81, シ1 
410 QUOT R3,RE, R1
420 DIF R2,RE, F2
4OO PRINT YARIGNCE = ',EZ
450 ETACK 20E,16,255
4G9 FPINT 'ETANGGFD UEVIGTION = ',95
4FO PETURN
ENO
```

APPENOIX D. - PROGRAM FOR THE

```
010000 /012737
010082/040002
010004 /001006
010006 /01273?
010010/000007
010012 /00+312
010014/005037
010016 /037770
016020/005000
010822 /005002
010024 /00503?
010026 /177560
010038/10573?
010032 /177560
010034/100375
510036/013780
010049/177562
010042/005003
010044/02002?
010046;000260
010050/100003
010052 /012703
010054/090001
010056/000416
010060 /020627
010062/000300
010064/100003
010066 /012703
010070/000003
110072/000410
010074 /020027
610976/900320
010100/100003
010102/012763
010104/000005
010106/000402
619110/012702
010112/900007
010114 /005202
610116 /105?`?
016420/1>7564
```

ORTA-KEYED PROGRAM. . CONTINUATION

32	
52	
5	
16.	
88	
10202	
22	
26	
230	/10037
1924 A	
9242	1

DATA－KEYED PROGRRM．．CONTINURTION

810254	1177565
018256	107720？
010260	1185737
010262	1177564
010264	／100375
018266	111273？
018270	1000212
010272	1177566
010274	1105737
010276	1177564
018308	／180375
010382	1112737
010304	1080212
010306	1177566
010310	1000．337
019212	1001172
010314	1000240
0110316	10？2？03
818320	1089804
$010 \geq 22$	＇100455
018こ24	1922703
019226	＇009092
010336	／1180425
810352	6020127
010234	；008260
010ここを	＇100003
010346	＇012704
$010 こ 42$	1060260
618344	＇980520
610346	／020127
016350	1006300
610352	1100003
010354	1012704
018356	／000260
010360	／096512
010362	＇020127
010364	1000320
$010 \geq 66$	110069
010376	1012794
＋10372	－196260
919ここ4	F909504
9193？	1912704
814969	1000250
019462	1060561
010404	\therefore 92612

DATA-KEYED PROGRAM.: CONTINUATION

810406	1088268
010410	/100003
010412	101278
010414	1080240
810416	1098473
818420	/02\%127
810422	1008300
010424	/100003
019426	1012704
018430	1088240
010432	/e00465
818434	'020127
618436	1000320
010448	1190003
016442	/012704
018444	1000240
010446	100045?
010450	/E12704
010452	1000240
010454	1000454
0110456	'022703
815460	'000806
010462	'100425
010464	'020127
610466	1090260
010470	'100003
010472	1012704
010474	1900320
019476	1900443
010506	1020127
010592	; 000300
010504	'109003
910506	1012704
010510	1006320
010512	1000435
018514	'020127
010516	1000320
610520	/100003
010522	1012704
016524	10106こ20
01052 E	'000427
010520	1012794
0105 ± 2	10100220
6105こ4	'900424
010526	'020127

```
010540/000268
010542 /100003
010544/012704
010546/000300
g10550/000416
019552/028127
010554/000300
010556 /100003
010560/012704
010552/800300
010564/000410
010566 /020127
010570/000320
010572/100003
9184:74/012704
010576/000300
010600/000402
010602/912704
940664/000300
010606 /074001
610618/074401
010612/023737
010614/001012
010616 /0シ7770
010620 /106024
010622 /013?014
010524/601006
010625 (012427
0106:0%001014
810622/010427
0106こ4;001006
010555/012704
016540,000084
010642 1106337
010644 /001014
010646 <077403
010650/000241
019652 ،012754
010554/060005
910656 /106137
0106E0/001014
010662 1077402
010604 /012504
0105EE 5010144
6405759:074401
```


DATA-KEYED PRIGRAM. . CONTINUATION

```
010E72 /005004
010574 /000240
018676 /000240
010700/060240
010702/105737
010704 /177564
010?86 /180375
010710/118137
010712 ;177566
018?14/013704
010716/001004
010720/010124
010722 /010437
010724/001004
010725 /00523?
010730/037770
010732 /005202
010734/020227
010735/004050
010740/0019こ5
010742/005002
010744/105737
010746/177564
010750/100275
010752/112727
010754/000215
010755 1177566
618760/912702
010762 /000012
919764/105737
010765 1177564
0107?0 /100375
010772/11273?
010774 1000206
010776 /177566
011009/077207
011002/10573?
011004/177564
011006/100375
011010 11273?
011912/060212
011914 117?566
011915/105?2?
011020/177554
011922 :100375
```


DAIA-KEYED PROGRAM... CONTINURTION

$$
\begin{array}{ll}
011024 & 112737 \\
011826 & 1090212 \\
011038 & 1177566 \\
011032 & 1005002 \\
011034 & \gamma 085004 \\
011936 & 1000167 \\
011940 & 1177112
\end{array}
$$

APPENDIX E. - ENCODING PROGRAM FOK

THE (15,4) CYCLIC CODE

```
014040 /012700
014042 /051000
014044/080240
014046 /000240
014050/013702
014052/850106
014054 /112037
614056 /050140
014060/812?03
014062/800002
014064/012704
014066 /900904
044078 /612795
014072 /050205
014074 /005027
014076;050142
014100/012501
014102 /196?37
014104/659140
014106/103002
014110 <0741%?
014112/050142
014:14 /000%40
014116 /0?7410
014120 <012ア\geq7
014122;059142
014124/052000
014126 /005237
014130/014124
0141こ2 /005237
014134/014124
014135/07722E
014140/077235
014142 <012727
014144 <052004
014146 <629216
014150 /009127
914152 i0g1172
```


APPENDIX F. - NOISE GEMERATING PROGRAM

49	1812708
814542	1032080
814544	1012781
014546	1801808
014550	1805020
014552	1077102
014554	1099240
014556	/012708
014568	1857808
014562	/812746
014564	1012705
014566	/012746
014570	1909030
014572	'911667
014574	1000025
014576	/912704
014699	1177304
014602	1612714
014694	'019000
014606	/01263?
014610	1177309
014612	1011467
014614	;000920
014615	'012701
014629	1177216
014622	'012792
014624	10900 08
014626	1012624
014630	-012714
914632	1909491
Q14634	'61444E
$0146 \geq 6$	/062716
014640	1090007
014642	1077307
014644	1985327
014646	1000906
014650	1901414
014652	, 911614
014654	1005044
014656	1612711
014650	1177775
014662	1905724
914664	-942?14
014666	, 900ge1
014676	1950914

NOISE GENERATING PROGRAM.. COHTINUATION

```
014672/012774
014674/800001
014676/808080
014700/000750
014702/085026
014704/812700
014786/057000
014710/012701
014712/032800
014714/912702
014716/080177
014720/012703
014?22 /000020
014724/086220
014726/006011
014730 1077303
014732 /005721
014734 /91276?
914736/60d005
014740/906220
014742/006011
814744,977302
014746/805721
014758/077215
014752/00013?
014754/001172
```


APPENDIX G. - DECODING PROGRAM FOR.

THE MINIMUM DISTfince DECODER.

```
014154 /012700
014156 /052080
014160 /013.?37
014162 /850180
014154/050182
014166 /06373?
014170 /050188
014172 /050102
014174 /013701
014176/050104
014280/012703
014202/054068
014204 ;012704
014206 /000017
014210 /90503?
014212 /050116
014214/011005
014216/074105
014220/012782
014222 ;00017
014224 ;006305
014226 /08553?
014220/050116
014232 1077204
014234 .0227こ7
014236/000084
014240/059116
014242;002016
014244 /006301
0:14246 ;103402
014250,077421
014252/000407
014254 ;062701
014256 /009002
014260 /077425
014262 %000403
614264 /019122
014256 %05720
914270 /009402
014272 /01272%
$14274 ;050406
*
```

```
014276/805720
014300/162737
014302 /800081
014304 1050182
014306/003336
014310/800240
014312 1000240
014314 /000240
014316 /800240
014320 /013708
014322 /850100
014324/012701
014326/054001
014330,0127E2
014332 /056000
014334 /005003
014336 1005004
014240/112103
014342/005201
014344 /112104
014346 /905201
014350 '012705
014352 1000005
014354 ;000241
014355 ,'106102
014365 ;077502
014352 i012705
014354 ;000004
014366 '106362
014370 ;07:302
014372/012785
014?74 ;0g0065
014376 ،000241
014406 ;106104
014402 ;077562
014404 /012705
01440E ;00日064
014410;106304
014412 ;077502
014414/012705
014416/000005
014420/900241
114422,156164
014424 ;077502́
014425 ;974こ04
0144こ0 r1.10422
0144E2 ;07P64日
0144こ4 i00015.
0144ご ،0011F2
```


LIST OF REFERENCES

1. Westing, A., Privacy and Freedom: Atheneum 1967.
2. Savage, J.E., "Some Simple Self-Synchronizing Digital Data Scramblers," Bell System Technical Journal, Vol. 45, No. 2, February 1967.
3. Leeper, D.G., "A Universal Digital Data Scrambler," Bell System Technical Journal, Vol. 52, No. 10, December, 1973.
4. Gitlin, R.D. and Hayes, J.F., "Timing Recovery and Scramblers in Data Transmission," Bell System Technical Journal, Vol. 54, No. 3, March 1975.
5. Mellen, G.E., "Cryptology, Computers and Common Sense," 1973 FJCC, AFIPS Conference.
6. Twigg, T., "Need To Keep Digital Data Secure?" Electronic Design, Vol. 23, No. 68, Pg. 68-76, 1972.
7. Henricksson, V., "On A Scrambling Property of Feedback Shift Registers," IEEE Transactions on Communications, Vol. 20, No. 5, Pp. 998-1001, October 1972.
8. Golob, S.W., Shift Register Sequences, San Francisco: Holden-Day 1967.
9. Meyer, C.H. and Tochman, W.L., "Pseudorandom Codes Can Be Cracked," Electronic Design, Vol. 23, No. 74, Pp. 74-76, 1.972.
10. Naval Research Laboratory Report 7900, "Cryptrgraphic Digital Communications," by Torrieri, D.J., July 1975.
11. Geffe, P.R., "Secure Electronic Cryptography", Westinghouse Electric Corporation, Baltimore, Md., Pp. 181-187, 1972.
12. Altman, L., Microprocessors, Electronics Book Series, McGraw-Hill, 1975.
13. Kakn, D., The Codebreakers, Macmillan, New York, 1967.
14. Shannon, C.E. and Weaver, W., the Mathematical Theory of Communications, University of Illinois Press, Urbana, Ill., 1949.
15. Shannon, C.E., "Communication Theory of Secrecy Systems," Bell System Technical Journal, 28,656, 1949.
16. Vernam, G.S., "Cipher Printing Telegraph Systems," Journal of the AIEF, Vol. XIV, February, 1926.
17. Sinkov, A., Elementary Cryptanalysis: A Mathematical Approach, Random House, New York, 1968.
18. Ash, Robert B., Information Theory.
19. S.G.S. Shiva, "Some Results on Binary Codes with Equivalent Words," IEEE Transaction on Information Theory, March 1969, Volume IT-15, Number 2.
20. Peterson, W. and Weldon, E.J. Jr., Error Correcting Codes.
21. Centinyilmaz, N., Application of the Computer for Real Time Encoding and Decoding of Cyclic Block Codes, Master's Thesis, Naval Postgraduate School, December 1975.

[^0]: Table No. V.- Simple substitution cipher Table of number of occurren ces.

[^1]: Procedure:

 ## The 4-bit word to be coded is loaded in parallel into the 4-stage
 1

 shift register feedback configuration s-bit serial output
 Then the shift register is l
 (the code word) is obtained.
 1.
 2.

 Then the shift register is let to run until a 15-bit serial output

